Reduction Recidivism via College-in-Prison
Thoughts on Data Collection, Methodology, and the
Question of Purpose

Robert Scott
Cornell Prison Education Program.

Abstract

Conversations about reducing recidivism can be reductionist. This paper introduces strategies by which college-in-prison programs can collect post-release data on their students, as well as the research methods necessary to make predictive claims about the impact of such work. The question is raised: is reducing recidivism the purpose of college-in-prison? Following some speculation about the prevalence of this narrative, the paper concludes with some thoughts about alternative justifications for college-in-prison.
Introduction

Is it possible to speak about reducing recidivism without being reductionist? It can be hard to avoid reductive thinking when our language divides humanity into categories of “prisoner” and “non-prisoner.” Organizers of college-in-prison programs know that there is a wide range of experiences of prison, and that colleges are also vastly diverse—thus we see great variation among the manifold college-in-prison models that may be found in the United States. Facing complex problems, it is tempting to formulate easy-to-understand solutions. Today’s discourse on college-in-prison are often based on a common syllogism: incarceration rates are excessive, college education reduces recidivism, therefore incarcerated people should be offered the opportunity to go to college. Though the argument that higher education reduces recidivism is intuitive, it is rarely made rigorously. This paper provides an exposition of data collection strategies and methods necessary to make arguments about the effects of college-in-prison. Rather than make such an argument, however, the paper questions whether “reducing recidivism” should be treated as the purpose for college-in-prison.

To begin, let me provide a working definition of recidivism. A recent meta-analysis of recidivism research and post-release employment outcomes found substantial inconsistency in the literature (Davis, Bozick, Steele, Saunders, & Miles, 2013). After reviewing 30 years of literature, the authors found only seven recidivism studies that met scientific standards (and, of those, the authors expressed reservations about five) and only one post-release employment study that met scientific standards (again, with expressed reservations about its methodology) (Davis et al., 2013, p. 25). Authors of the study cited inconsistent definitions of recidivism, though they noted that the most common definition for recidivism used “reincarceration as the outcome measure” (p. 27). This shall therefore serve as my working definition of recidivism: a measurement of legally-mandated sentences of reincarceration, either arising from convictions for new crimes or from violations of probation/parole conditions. Many would argue that the latter is problematic for it includes conditional infractions that may otherwise be considered non-criminal. One could go further to question the judges, courts, and statutes that mandate prison sentences; I leave these issues for others to work on. I am interested in all actual incarceration because incarceration impacts individuals and communities, whether or not there is a new crime.

To put it another way: recidivism does not measure how many people return to criminal life, it measures how many people return to jail or prison. The interdependence of the concepts of crime and incarceration can complicate the issue of measurement. Consider the following hypothetical: a former college-in-prison student on parole is arrested. This person spends three weeks in a county jail before the charges are dropped and the person is released without a conviction in a court of law. Does this count as reincarceration and thus recidivism? Let us assume that the only reason the person spent three weeks in jail was because they lacked money for bail—there was no new criminal conviction (note that “reconviction” was one of the other definitions for recidivism that was rejected by the meta-analysis cited above). Still, three weeks in jail would be detrimental to the individual in terms of probable loss of employment, potential loss of rental housing, and it would be detrimental to the community in terms of the employer’s loss of a worker, the family’s loss of a contributor, the landlord’s loss of a tenant. These are hypothetical consequences; what is measurable is the three weeks of reincarceration. I realize that, in the absence of a conviction/crime, many will not want to count this jail event as recidivism in spite of the fact that such events are included in standard comparisons such as Bureau of Justice Statistics
data on recidivism. The problem is that discounting certain reincarcerations leads to comparisons of apples and oranges.

In Liberating Minds: The Case for College in Prison, Ellen Lagemann (2016) places the discussion of recidivism in her chapter on the economics of college in prison—this is logical, because reducing recidivism could be considered proxy to economic savings. Her exposition of the issue, however, makes it immediately clear how easily apple/orange comparisons can arise:

A widely cited study conducted by the U.S. Bureau of Justice Statistics found that among more than 400,000 people released from state correctional facilities in thirty states in 2005, 30 percent were arrested again within six months of release, 67.8 percent were rearrested within three years of release, and the number rose to 76.6 percent five years after release… for both Bard and Hudson Link, by comparison, the recidivism rate for people who have earned associate’s or bachelor’s degrees is just 2 percent… (Lagemann, 2016, p. 37)

Is the “2 percent” based on a six month, three-year, or five-year follow-up? Reading the sources cited by Lagemann here and elsewhere, I did not find a single exposition of recidivism definitions, counting methodology, or any clarity about the periodicity of recidivism claims made by college-in-prison programs (Lagemann, 2016, pp. 3, 11, 37–39, 135). To be self-critical, I should disclose that this lack of clarity about the parameters of college-in-prison recidivism claims is also present in the numbers cited for the programs which I have personally been associated with. I believe that virtually all college-in-prison programs eventually become aware that claims to “reduce recidivism” are not being studied rigorously. College-in-prison programs currently prioritize direct services to incarcerated people, and they have very small budgets to provide classes so there are scant resources to pursue research agendas that aggressively quantify all reincarcerations in all their messy reality. To put it plainly: organizers of college-in-prison programs are incentivized to depress reincarceration numbers because such programs typically argue that investing in college saves money in reduced crime/reincarceration. Furthermore, these programs understand themselves in comparison to inflated recidivism reports for non-college enrolled individuals.

Counting reincarceration events tends to inflate numbers because certain individuals have multiple reincarcerations. The high recidivism rates cited in Bureau of Justice Statistics literature appear to be inflated by counting multiple reincarceration events for singular individuals—when counting recidivists instead of recidivism events, researchers never found no more than 33% of individuals were reincarcerated, though many individuals were reincarcerated multiple times (Rhodes et al., 2016, p. 1004). This suggests that claims of ≥60% recidivism are in fact (inadvertently) misleading at best. What is more, this statistic is commonly paraphrased with people stating that >60% or >70% “of released inmates are arrested again within 5 years” (Fieldstadt, 2014). This is actually wrong because the number of individuals being re-arrested is far fewer than the number of actual re-arrests.

Counting recidivism as the number of individuals who experience reincarceration has its other limitations. Society doesn’t pay the same price for each incarcerated person: the cost to the taxpayer is based on the number of days that incarcerated people spend in prison or jail. This is a major part of why people are interested in the reduction of recidivism, beyond the immediate human cost. Obviously different incarcerations are of different durations. But consider: a parolee who is reincarcerated for three weeks, but who would have otherwise been reincarcerated for three years represents a 98% reduction in recidivism when counted as
21 days instead of 1095 days—that’s a reduction of recidivism within one individual. Counting recidivism as the sum of durations of reincarcerations in a population would be useful in hypothesizing cost/saving for the taxpayer.

An example from the Cornell Prison Education Program illustrates the need for exposition of data collection and counting methodology in calculating recidivism. Of the first 15 people to be released from prison after participating in the Cornell Prison Education Program who completed at least one year of college (30 credit hours), I found that 2 had been reincarcerated. Counting recidivism as the number of reincarcerated individuals, the program had 13.3% recidivism (2/15). But these individuals’ re-incarceration events were not equivalent to their previous incarcerations. These 15 people served an aggregate 193 years in prison during their initial incarcerations, and the subsequent reincarceration time for the 2 recidivists amounted to 1.4 years. In terms of duration, the group’s reincarceration was 0.7% of the original incarceration. This figure would be more useful for calculating cost of reincarceration than the 13.3% figure—the latter is rubbish from a cost-to-taxpayer perspective. What use is it to say that “recidivism was reduced from 40% to 13%” given that the counting methodologies may be completely different, and the prison sentences being compared are of different lengths? If we are interested in accurately measuring reductions in recidivism then we have to avoid becoming reductionist. In the following section I describe methods of data collection and analysis that I believe could be standardized to measure recidivism among participants of college-in-prison programs in the United States. My aim is to describe a reproducible system, and to illustrate how programs can rigorously track the reincarceration of their students. Then I discuss the conditions required to make claims of probability. Finally, I revisit the question of whether the purpose of college-in-prison is to quantify cost savings via reduced reincarceration, from the perspective of a college-in-prison organizer.

A Method for Collecting Recidivism Data

I have defined recidivism as the measurement of legally-mandated sentences of reincarceration, and I have distinguished between counting the number of reincarcerated individuals, the number of reincarceration events, and the duration of reincarceration in a population. Each of these measures a specific dimension of recidivism. This section will provide a step-by-step overview of one method for collecting this data.

First, most US states have corrections websites where a user can retrieve basic information on incarcerated individuals. The user must have a personal identifier such as name, birthday, or prison identification number to look up these individuals. College-in-prison programs can use these webpages to look up their students. Most of the information in these “offender look-up” databases are not spectacular: name, date of incarceration, status, and location are common data points. To track reincarceration one simply needs to look up students’ status repeatedly over time and record the changes. This will be of interest to anyone who is interested in whether their incarcerated college students are able to remain free after parole. The following example illustrates.

Let us imagine a hypothetical group of 15 people taking a college course at Joliet Correctional Center in Illinois in Spring 2014, as follows:

1 The author is Executive Director of the Cornell Prison Education Program.
2 These 15 individuals had been released within the preceding five years; some had been released less than one year before this count.
3 40% is the “recidivism rate” for New York State that is often quoted by state officials.
Table 1

<table>
<thead>
<tr>
<th>#</th>
<th>Prison ID</th>
<th>Last, First</th>
<th>Institution</th>
<th>Incarceration Date</th>
<th>Parole</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R00001</td>
<td>Name1</td>
<td>JOLIET CORR.</td>
<td>07/22/1998</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>2</td>
<td>R00002</td>
<td>Name2</td>
<td>JOLIET CORR.</td>
<td>09/01/1998</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>3</td>
<td>B00001</td>
<td>Name3</td>
<td>JOLIET CORR.</td>
<td>08/09/2009</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>4</td>
<td>Y00001</td>
<td>Name4</td>
<td>JOLIET CORR.</td>
<td>03/23/2014</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>5</td>
<td>R00003</td>
<td>Name5</td>
<td>JOLIET CORR.</td>
<td>12/10/2011</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>6</td>
<td>K00001</td>
<td>Name6</td>
<td>JOLIET CORR.</td>
<td>01/30/2000</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>7</td>
<td>K00002</td>
<td>Name7</td>
<td>JOLIET CORR.</td>
<td>10/19/2003</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>8</td>
<td>R00004</td>
<td>Name8</td>
<td>JOLIET CORR.</td>
<td>04/15/2002</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>9</td>
<td>K00003</td>
<td>Name9</td>
<td>JOLIET CORR.</td>
<td>04/06/2012</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>10</td>
<td>B00002</td>
<td>Name10</td>
<td>JOLIET CORR.</td>
<td>01/07/1991</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>11</td>
<td>R00005</td>
<td>Name11</td>
<td>JOLIET CORR.</td>
<td>11/21/2007</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>12</td>
<td>R00006</td>
<td>Name12</td>
<td>JOLIET CORR.</td>
<td>08/22/2004</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>13</td>
<td>B00003</td>
<td>Name13</td>
<td>JOLIET CORR.</td>
<td>02/02/1996</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>14</td>
<td>K00004</td>
<td>Name14</td>
<td>JOLIET CORR.</td>
<td>09/15/2007</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
<tr>
<td>15</td>
<td>R00006</td>
<td>Name15</td>
<td>JOLIET CORR.</td>
<td>10/08/2005</td>
<td>-</td>
<td>6/1/2014</td>
</tr>
</tbody>
</table>

Note. This is an imaginary 15 student class that displays the data elements available from Illinois Department of Corrections (IDOC) website. The “Prison ID” and “Last, First” fields do not correspond to anyone in particular. In an actual data set, real prison identification numbers and actual names would appear.

This is a fictional truncated dataset (the Joliet prison was closed years ago) but comparable data elements are available online (Illinois Department of Corrections, 2017).

The next step will be to regularly enter the Prison ID numbers of the students who participated in the college program and to record the changes. For instance, one might enter all the Prison ID numbers on January 1 and July 1 of each year in order to produce an update every six months; note that such wide intervals of observation will fail to detect short periods of reincarceration (e.g. 6 week parole violation sentence). More frequent searches provide more detail about the status of the (former/current) students. If we imagine a follow-up query to track the imaginary class found in Table 1 after four years, the data on the top five entries might appear like Table 2.

Table 2

<table>
<thead>
<tr>
<th>#</th>
<th>Prison ID</th>
<th>Last, First</th>
<th>Institution</th>
<th>Incarceration Date</th>
<th>Parole</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R00001</td>
<td>Name1</td>
<td>MENARD CORR.</td>
<td>07/22/1998</td>
<td>-</td>
<td>6/1/2018</td>
</tr>
<tr>
<td>2</td>
<td>R00002</td>
<td>Name2</td>
<td>JOLIET CORR.</td>
<td>09/01/1998</td>
<td>-</td>
<td>6/1/2018</td>
</tr>
<tr>
<td>3</td>
<td>B00001</td>
<td>Name3</td>
<td></td>
<td>08/09/2009</td>
<td>02/09/2015</td>
<td>6/1/2018</td>
</tr>
<tr>
<td>4</td>
<td>Y00001</td>
<td>Name4</td>
<td>SHAWNEE CORR.</td>
<td>03/23/2014</td>
<td>-</td>
<td>6/1/2018</td>
</tr>
<tr>
<td>5</td>
<td>R00003</td>
<td>Name5</td>
<td>JOLIET CORR.</td>
<td>12/10/2011</td>
<td>-</td>
<td>6/1/2018</td>
</tr>
</tbody>
</table>

Note. This is imaginary data for the first 5 students in an imaginary class that displays the data elements available from Illinois Department of Corrections (IDOC) website. The “Prison ID” and “Last, First” fields do not correspond to anyone in particular.

Note that two students are now at other prisons and a third was paroled in 2015. Combining this data with the data from the earlier search, by matching the students by their identification numbers, one can see at a glance the changed location or status for these students. To
combine this data, one could for instance record the results of the different searches in different tabs of a spreadsheet, then program a subsequent tab of the spreadsheet to combine the data from the other tabs and to highlight changes. Then one can see that changes that occurred over time for each individual. This resultant list of changes will demonstrate changes such as recidivism (e.g. if there is a parole event followed by an incarceration event for the same individual). This will become more powerful when we include information about the college education achievements of the individuals in the data set.

Let us say that all five of these imaginary students eventually depart the college program and receive parole. Let us jump ahead to an imagined day when this has already been documented. Let us remove the static variables (name and prison ID) in order to focus on the dynamic variables. We will include the total number of college credits, highest degree attained, and use simple addition/subtraction to automatically get the number of days in prison, and the number of days on parole. At this point, it is seven years since our original look-up of the 15 college-enrolled individuals. In this hypothetical, we can imagine that there would be many more students to track at this point, hence the need for a worker, student, or intern to look up all of the program’s students. Again, we focus on the first five individuals’ entries, below.

Table 3
Data for five students from Internet Databases of a State Prison Populations

<table>
<thead>
<tr>
<th>#</th>
<th>Incarceration degree</th>
<th>Parole date</th>
<th>Total days in Prison</th>
<th>Today's date</th>
<th>Total days on parole</th>
<th>Total credits</th>
<th>Highest degree attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>07/22/1998</td>
<td>07/01/2020</td>
<td>8057 days</td>
<td>6/1/2021</td>
<td>335</td>
<td>21</td>
<td>GED</td>
</tr>
<tr>
<td>2</td>
<td>09/06/2005</td>
<td>03/01/1998</td>
<td>4934 days</td>
<td>6/1/2021</td>
<td>1188</td>
<td>9</td>
<td>GED</td>
</tr>
<tr>
<td>3</td>
<td>03/21/2021</td>
<td>02/09/2015</td>
<td>72 days</td>
<td>6/1/2021</td>
<td>2232</td>
<td>3</td>
<td>GED</td>
</tr>
<tr>
<td>4</td>
<td>03/23/2014</td>
<td>03/23/2021</td>
<td>2557 days</td>
<td>6/1/2021</td>
<td>70</td>
<td>74</td>
<td>A.A.</td>
</tr>
<tr>
<td>5</td>
<td>12/10/2011</td>
<td>06/23/2018</td>
<td>2387 days</td>
<td>6/1/2021</td>
<td>1074</td>
<td>57</td>
<td>GED</td>
</tr>
</tbody>
</table>

Note. This table represents two imaginary students seven years later, with a mix of criminal justice and college data elements.

These former students were released on parole and now all have both an “incarceration date” and a “parole date” (note that “total days in prison” is calculated by subtracting the former from the latter). Deducting the parole date from “today’s date” gives “total days on parole.” Note that the third individual has been reincarcerated and now has 72 days on a new sentence. We can see that this person had 2,232 days (6.1 years) on parole, then re-appeared in the state database on 03/21/2021 in our imagined scenario. We can also see that this person was paroled soon after we began collecting data, and this person did not complete much coursework in the college program (total credits = 3). This raises the question, “what is the threshold of college participation that we consider meaningful when tracking recidivism?” If the answer is “individuals who receive college credit,” then our group (n=5) has a recidivism rate of 1 in 5 (20%); if the answer is “individuals who complete college degrees” then our group (n=1) only includes one person on parole with an Associate’s degree who has only been out for a mere 70 days. In that case, seven years into this program, we would not be able to say that anyone who had gone to college in prison had made through six months of parole. Notice that it takes a long time to complete a college education, obtain parole, and then demonstrate a multi-year success rate in life after prison.
Reducing Recidivism via College-in-Prison

A collection of easy-to-calculate data points using public data and college information is provided in Table 4. Beyond recidivism measurements, the composite variables in Table 4 reveal other easily measured features such as proportionality of students' exposure to incarceration and college education. These figures reveal a tremendous diversity of experiences when looking at a given program. For instance, past students of the Cornell Prison Education Program include individuals for whom the “proportion of life spent in prison” (s) was >50% and others for whom it was <5%. The program had students for whom the “proportion of prison term in college” (q) was >80% and others for whom it was <2%. There were students who received 24 “credits earned per year in college” (r) and others who earned <3 “credits per year in college.” These individuals were not experiencing the same incarceration, nor were they receiving the same education—and this variation was found within just one program. In my mind, this shatters any notion that “attending college while in prison” is a singular phenomenon. Or, to put it in terms of social science research: college-in-prison is not a uniform treatment.

The variation among college-in-prison programs does not change my interest in tracking recidivism in these programs. I am still interested in recidivism, and reducing it, because the phenomenon of reincarceration is harmful to students, the communities they come from, and ultimately society as a whole. Earlier I discussed three measures of recidivism: the number of recidivism events, the number of recidivist individuals, and the total recidivism time. To find the number of recidivism events, one simply has to look at all incarceration dates d that occur after parole dates e in a population. A recidivist individual (v) is any person a for whom it is true to say that \(d_a - e_a > 0 \). The number of recidivism events is the total number of values \(d_a > e_a \). Total recidivism time (z) is thus the sum of all values \(d_a - e_a \) for individuals v. To illustrate, let us expand the story of the third student in the imagined class described in Tables 1, 2 and 3. Let us name this student “Fred” and let us assume he experienced two additional incarcerations as seen in Table 5.
Table 4

Data elements available from criminal databases and colleges for studying recidivism.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
<th>Variable</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>CJ database</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Prison ID #</td>
<td>CJ database</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Date of Birth</td>
<td>CJ database</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Incarceration Date(s)</td>
<td>CJ database</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Release Date(s)</td>
<td>CJ database</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Today's Date</td>
<td>College</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>College Start Date</td>
<td>College</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>College End Date</td>
<td>College</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>College Credit Hours</td>
<td>College</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>Degree Completion</td>
<td>College</td>
<td>j</td>
<td></td>
</tr>
<tr>
<td>Age when Incarcerated</td>
<td>CJ database</td>
<td>k</td>
<td>= d - c</td>
</tr>
<tr>
<td>Prison Time Served</td>
<td>CJ database</td>
<td>l</td>
<td>= e - d</td>
</tr>
<tr>
<td>Age When Released</td>
<td>CJ database</td>
<td>m</td>
<td>= e - c</td>
</tr>
<tr>
<td>Time Since Release</td>
<td>College</td>
<td>n</td>
<td>= f - e</td>
</tr>
<tr>
<td>Age at time of report (today)</td>
<td>Composite</td>
<td>o</td>
<td>= f - c</td>
</tr>
<tr>
<td>Years in College</td>
<td>College</td>
<td>p</td>
<td>= h - g</td>
</tr>
<tr>
<td>% of Prison spent in College</td>
<td>Composite</td>
<td>q</td>
<td>= [(h - g) ÷ (e - d)] × 100</td>
</tr>
<tr>
<td>Credits earned/year in College</td>
<td>College</td>
<td>r</td>
<td>= i ÷ (h + g)</td>
</tr>
<tr>
<td>% of Life spent in Prison</td>
<td>Composite</td>
<td>s</td>
<td>= [(e - d) ÷ (f - c)] × 100</td>
</tr>
<tr>
<td>Paroled Individual</td>
<td>CJ database</td>
<td>t</td>
<td>when (e_a \neq 0)</td>
</tr>
<tr>
<td>Non-Recidivist Individual</td>
<td>CJ database</td>
<td>u</td>
<td>when (d_a - e_a < 0)</td>
</tr>
<tr>
<td>Recidivist Individual</td>
<td>CJ database</td>
<td>v</td>
<td>when (d_a - e_a > 0)</td>
</tr>
<tr>
<td>Total non-recidivists</td>
<td>CJ database</td>
<td>w</td>
<td>= (\sum a_u)</td>
</tr>
<tr>
<td>Total number of recidivists</td>
<td>CJ database</td>
<td>x</td>
<td>= (\sum a_v)</td>
</tr>
<tr>
<td>Parole time without recidivism</td>
<td>CJ database</td>
<td>y</td>
<td>= (\sum_{i=1}^{n} d_a - e_a)</td>
</tr>
<tr>
<td>Total recidivism time</td>
<td>CJ database</td>
<td>z</td>
<td>= (\sum_{i=1}^{n} d_a - e_a)</td>
</tr>
</tbody>
</table>

Note. Data sourced state prison websites (CJ database) and college-in-prison programs (College) can be used to generate additional variables (Composite). Note that the variables cited in the right column “Equation” refer to the variables assigned in the column “Variable” e.g. “\(d_a\)” refers to the incarceration date (\(d\)) of a given person (\(a\)).

Table 5

Data elements available from criminal databases and colleges for generating recidivism data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
<th>Variable</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>CJ database</td>
<td>a</td>
<td>Fred</td>
</tr>
<tr>
<td>Prison ID #</td>
<td>CJ database</td>
<td>b</td>
<td>B00001</td>
</tr>
<tr>
<td>Date of Birth</td>
<td>CJ database</td>
<td>c</td>
<td>5/7/1988</td>
</tr>
<tr>
<td>Incarceration Date(s)</td>
<td>CJ database</td>
<td>d</td>
<td>08/09/2009, 03/21/2021, 01/05/2023</td>
</tr>
<tr>
<td>Release Date(s)</td>
<td>CJ database</td>
<td>e</td>
<td>02/09/2015, 09/21/2021, 08/26/2023</td>
</tr>
</tbody>
</table>

Note. Data for calculating three type of recidivism measures for imaginary student “Fred.”
Fred enrolled in a college class at Joliet prison in 2014, and we know that he was paroled on 02/09/2015. The number of recidivism events is 2 (03/21/2021 and 01/05/2023), the number of recidivist individuals is 1 (Fred), and the total recidivism time is 448 days. Again, to detect all events/dates will require repeated queries (i.e. weekly or monthly); if one were only to query Fred’s status in January of each year, one could miss the fact that Fred was incarcerated in March then released in September of 2021. After several years a program may find itself conducting searches for dozens of former students—it may be helpful to have interns or automation assist in collating the data.

This general methodology will have to be adapted to each state. Some states provide a “custody status” field (e.g. “on parole,” “in custody,” etc.) whereas others simply return error messages when you search for someone who is not currently incarcerated. Some states don’t provide any dates, so the date of the query (f) may be treated as an approximation. Various state databases give detailed crime/conviction information, mugshots, city of origin, parole conditions, etc. It should be mentioned at least once that any research using state data on incarcerated people falls into the very problematic and reductionist sex/gender binary that is found in virtually all state prison systems.

The hypothetical case of Fred raises another question: how much college is required to be included in an evaluation of the impact of “college in prison”? Fred only has three college credits—are we going to track him for the rest of his life? What do we think the impact of three credits will be after five years? We have seen that the college experience is not monolithic, and we are aware that many prison education programs result in lots of individuals with “some college” (i.e. credits but no degree). Outside prison walls, there are known to be statistically significant differences between people with “no college,” “some college,” and a “college degree.” Paradoxically, it is occasionally observed that those with “some college” may have worse outcomes than those with “no college” (Korn, 2014). Assuming that a college intends to offer a complete program (e.g. Associate’s degree), how are we to treat the multitude of individuals who only complete “some college”? My answer has been to track “number of college credits” (i) and “highest degree attained” (j) for all students in the Cornell Prison Education Program. Statistical analysis on different credit-earning groups could establish impact thresholds. I do not think it makes sense to treat college as a major intervention for individuals with low-levels of college attainment (e.g. one course or one semester). At least one program studied for recidivism effects found that “dropouts” who left a treatment program early actually had higher recidivism rates than the control group which never began the program in the first place (Knight, Simpson, & Hiller, 1999). While the current landscape of college-in-prison programs do not produce controlled empirical research data, I think it is valuable to consider what would be necessary to treat college-in-prison outcomes with standard methods of social science.

How to Use Recidivism Data to Make Predictive Claims

I have described some of the college-in-prison recidivism claims, and I have described a strategy for compiling post-release reincarceration data. Now I turn to the issue of empirical knowledge and ask, “what conditions must be fulfilled to make claims of probability?” Scientific studies are based on random samples, given uniform treatments, and the treatment group is then compared to a control group. The “effect” attributed to the treatment is a function of the difference between the treatment group and the control group which should be matched to the treatment group in every regard except for the fact that the control group received no treatment. Then one can attribute the difference in outcome to the difference of treatment rather than lurking variables (e.g. non-random sample). In the case of
college-in-prison recidivism claims, the treatment is “college education” and the effect we are investigating are post-release reincarceration. But among today’s college-in-prison programs we find hardly any random sampling, and we know that college-in-prison is not a uniform treatment, and that statistical claims in this field rarely reference a control group but rather compare college-educated populations with general prison population dynamics which are not comparable to the college student population. I will discuss each of these issues in turn.

Self-selection bias makes it impossible to use a college-in-prison program’s reincarceration data to predict outcomes in the general population. Probability sampling only works when a sample is selected from the population at random. Given a sample of sufficient size and a well-designed experiment with controls and replication, the measured effect in the treatment group is taken to be predictive of the anticipated effect on the general population within a given interval of confidence. To put it another way, the effects on students who enroll themselves in college-in-prison cannot be used to predict effects on members of the population who cannot or do not want to go to college. College-motivated individuals are a specific group, not a random group. That is the problem with self-selection bias: when we see high recidivism in the general prison population and low recidivism in the college-in-prison group, it stands to reason that the latter may be comprised of individuals who were unlikely to recidivate in the first place. In terms of causality, we cannot propose that college access caused lower recidivism in a group unless we can show that a similarly qualified and motivated group that was denied college had a higher recidivism rate.

The less uniform the experience of college-in-prison is, the less useful the data for probability sampling. As we have seen, to understand the impacts of college during incarceration one needs an awareness that both are sequential, duration-specific processes. This is why we measure college credit in “hours” just as we measure prison sentences in years. Different durations of college/prison are different treatments. It is trivially easy to keep track of duration, as well as “time since treatment” for both college and prison. With a sufficiently large sample one will see different results for the different treatments, even within one program—it therefore strikes me as absurd to hear people generalize about the impact of college or prison as though it were a singular commodity. Prisons themselves are very different from one another. There are also differences in school quality: one does not expect the same outcome from an education at an elite university as a small community college. The phrase “college-in-prison” collapses all of these distinctions. Again, it becomes a comparison of apples and oranges.

Finally, it does not make sense to measure the “reduction” of recidivism rates in former college-in-prison students by comparing these students to the general population because the general population is not a control group. A control group is a set of individuals randomly drawn from the same population as the treatment group—the only difference is that the control group does not receive the treatment (in this case, access to the college program). One could mistakenly think that college-in-prison students are essentially drawn at random, but this is at odds with common sense. Consider a report on New York parolees from 2010 ($n = 24,605$) where 42% returned to prison within 3 years (Kim, 2014). Would it make sense to compare 2010 parolees who participated in a college-in-prison program with this the general parolee population of 2010? No; the college-in-prison group exceeded a high school education, but only 58% of the NYS general prison population had completed high school by the following year (Dworakowski & Bernstein, 2013, p. 24). The general population cannot be our control group because it would be impossible to randomly enroll members in college. College-in-prison cannot lower recidivism for people who lack high school! Comparing a college-in-prison program’s recidivism to the general prison population recidivism is another apple/orange comparison.
Where there is no random sampling, no uniform treatment, and no control group comparison, there will be no scientific claims made about the impact of the intervention. Nevertheless, we frequently hear formulations of college-in-prison reducing recidivism, as though education were a pill that any person could swallow and without any other intervention this person will be cured of criminality, relieved of the burden of the ceaseless surveillance of the carceral state, with all other institutional barriers to reintegration somehow removed or negated, and no trauma of the self nor problems in the community to complicate the picture. When programs inflate their justifiable claims of impact, they distract from the fact that the multiplicity of changes needed to heal the harms of the cycles of crime and incarceration exceed that which a college experience can provide by itself. Claims that college-in-prison can almost completely eliminate recidivism are akin to suggesting that college is the only reform needed to reduce mass incarceration. Such facile arguments seem contrary to what motivates academics to initiate college-in-prison programs in the first place.

When there does appear to be reduced re-incarceration compared to an appropriate control group, researchers must exercise caution in claiming that reduced reincarceration equates to taxpayer savings. It may be tempting to say that $x fewer people from a college-in-prison group were reincarcerated, or that their sentences were $y shorter than the control group, and thus the savings to the taxpayer equal x multiplied by the cost of incarcerating a person in a given state. This is wrong. A recent attempt to fund a reduction of youth recidivism in New York City jails revealed an interesting fact, “the city believes it can save approximately $4,600 per jail bed for reductions of less than 100 beds, but approximately $28,000 per jail bed for reductions of 100 beds or more” (Rudd, Nicoletti, Misner, & Bonsu, 2013, p. 15). In other words, unless a full wing of the jail (100 beds) or an entire prison closes, it is impossible to claim to have dramatically reduced costs of the prison system. It is a common fallacy to claim that keeping a few dozen people out of prison might save taxpayers hundreds of thousands of dollars without any explanation of what expenses were saved (e.g. did they reduce correctional staff and programming at the scale of a few dozen people? Did corrections officials purchase less equipment after a few dozen people were released?). Common sense tells us that when a few cells are left vacant across a state, the correctional system does not immediately shrink and return the unused infrastructure to the public as a tax rebate.

I do not think that college-in-prison programs do what they do in order to provide their states with cost-effective crime reduction. This was not the main argument that was made during the 1994 debate over Pell Grants in prison, either. Opponents of college-in-prison did not deny that college reduced recidivism (though they accused the success stories of being anecdotal), and proponents of college-in-prison used several other arguments in addition to talking about reducing recidivism (Page, 2004). The principal contention was over whether “criminals” deserved any entitlement programs at all, and what message such programs sent to “non-criminals”. These college-enrolled “prisoners” received <0.1% of Pell awards, and there was no significant savings/benefit to discouraging them from receiving an education (Page, 2004, pp. 363–368). The ban on Pell Grants in prison was an ideological decision, and it is unclear whether better numbers can change this. For anyone who thinks that the US cannot afford financial aid-supported college-in-prison programs, we already have a giant meta-study which argues that each $1 spent on correctional education will save $5 on future incarceration expenses (Davis et al., 2013, p. 59). Even when presented with this specific argument, New York legislators declined to let 0.03% of the corrections budget be

used for classes offered beyond the high school level (Editorial Board of the New York Times, 2016). College-in-prison programs are generally interested in such policy debate outcomes, but it would be silly to suggest that college-in-prison programs exist primarily to produce data that are used by politicians who are trying to improve the economic efficiency of large state correctional systems. To the contrary, college-in-prison programs are interested in recidivism because it pertains to their students’ welfare.

Conclusion

I have endeavored to write this essay in a manner that may be understood by practitioners in the field of higher education in prison. I want to be understood by the organizers of these programs. I believe that the method I have described for synthesizing data on incarcerated students could be conducted by most colleges with prison programs in the United States. Though I find it unlikely that these programs will conduct empirical social science, the data is nevertheless important and necessary to the organizing work itself. From the perspective of a college, student outcome data is inherently significant. Colleges are interested in recidivism because repeated imprisonment is detrimental to formerly incarcerated alumni, period. Though making quantitative claims about mass incarceration would require a higher level of rigor, program organizers can at least begin to document who is being reincarcerated from their programs. If a program cannot produce a list of the parole status of their students who received parole over the past several years, then they are in no position to claim to have produced a scalable intervention, let alone one with a specific probability of success.

Reductionist treatments of recidivism have become arguably the most cited “statistics” on the impact of higher education in prison. Quantitative claims of reduced recidivism are echoed in almost all discussions about these programs. To be fair, there are some controlled, randomized, experiments on the impact of education on recidivism that could lead to empirical claims about reducing recidivism via education (OpenDoors, 2017). There are also propensity score matching studies that attempt to control for selection bias by matching treatment groups with comparable non-treatment individuals (Kim & Clark, 2013). But for my intended audience, the organizers who struggle to bring college courses into prison without tuition revenue to pay for education costs, it seems a misguided and unethical use of limited resources to identify a comparable college-eligible group within the prison population in order to deny them an education so that they can serve as a control group. The reality is that people running college-in-prison programs are committed to their work irrespective of whether or not they are collecting good quality data for empirical social science.

Proponents of college-in-prison may find that discussing recidivism leads to a discourse that sounds dehumanizing. Let us assume that college-in-prison reduces recidivism, and let us accept the argument that therefore we should allow incarcerated people to study at the college level. Can we legitimately emphasize the “humanity” of incarcerated people while suggesting that providing in-prison college courses will help us save money on their future incarcerations? This is a consequence of the reductionism I cited at the beginning of this essay. In today’s discourse, education is treated as an economic “cost savings” when applied to “felons” but it is a societal “investment” when “non-felons” receive it. The latter are euphemistically told that “everybody deserves a chance to go to college,” while the former are subjected to a near-absolute prohibition. If higher education in prison finds a purpose in revealing that both groups are part of the same humanity, then there is a need to call out this
false dichotomy rather than argue that college-educated felons cost less than the uneducated ones.

In short, the distinction between recidivists and non-recidivists is the same as that of prisoners and non-prisoners. It turns out that we cannot escape this binary while talking about recidivism. This leads me to conclude that reducing recidivism should not be treated as the purpose of college in prison. For me, the purpose of this work is to provide people with a chance to go to college, to educate themselves and thus transform themselves and others. One could say that the purpose of education in humanization. Prisons are sort of campuses of dehumanization, and by entering prisons college educators naturally will be interested in seeing their students get out and stay out. I hope this paper has provided some useful tools not only for data collection, but for thinking about why it should be done.

References

Critical Education

Author

Robert Scott is Executive Director of the Cornell Prison Education Program.
Reducing Recidivism via College-in-Prison

Critical Education

criticaleducation.org
ISSN 1920-4175

Editors
Stephen Petrina, University of British Columbia
Sandra Mathison, University of British Columbia
E. Wayne Ross, University of British Columbia

Associate Editors
Abraham P. DeLeon, University of Texas at San Antonio
Adam Renner, 1970-2010

Editorial Collective
Faith Ann Agostinone, Aurora University
Wayne Au, University of Washington, Bothell
Jeff Bale, University of Toronto
Theodorea Regina Berry, U of Texas, San Antonio
Amy Brown, University of Pennsylvania
Kristen Buras, Georgia State University
Paul R. Carr, Université du Québec en Outaouais
Lisa Cary, Murdoch University
Anthony J. Castro, University of Missouri, Columbia
Alexander Cuenca, Saint Louis University
Noah De Lissovoy, The University of Texas, Austin
Kent den Heyer, University of Alberta
Gustavo Fischman, Arizona State University
Stephen C. Fleury, Le Moyne College
Derek R. Ford, Syracuse University
Four Arrows, Fielding Graduate University
Melissa Freeman, University of Georgia
David Gabbard, Boise State University
Rich Gibson, San Diego State University
Rebecca Goldstein, Montclair State University
Julie Gorlewski, SUNY at New Paltz
Panayota Gounari, UMass, Boston
Sandy Grande, Connecticut College
Todd S. Hawley, Kent State University
Matt Hern, Vancouver, Canada
Dave Hill, Anglia Ruskin University
Nathalia E. Jaramillo, University of Auckland
Richard Kahn, Antioch University Los Angeles
Kathleen Kesson, Long Island University
Philip E. Kovacs, University of Alabama, Huntsville
Ravi Kumar, South Asia University
Saville Kushner, University of Auckland
Zeus Leonardo, University of California, Berkeley
John Lupinacci, Washington State University
Darren E. Lund, University of Calgary
Curry Stephenson Malott, West Chester University
Gregory Martin, University of Technology, Sydney
Rebecca Martusewicz, Eastern Michigan University
Cris Mayo, University of Illinois, Urbana-Champaign
Kathleen Kesson, Long Island University
Philip E. Kovacs, University of Alabama, Huntsville
Ravi Kumar, South Asia University
Saville Kushner, University of Auckland
Zeus Leonardo, University of California, Berkeley
John Lupinacci, Washington State University
Darren E. Lund, University of Calgary
Curry Stephenson Malott, West Chester University
Gregory Martin, University of Technology, Sydney
Rebecca Martusewicz, Eastern Michigan University
Cris Mayo, University of Illinois, Urbana-Champaign

Peter Mayo, University of Malta
Peter McLaren, University of California, Los Angeles
João Paraskeva, UMass, Dartmouth
Jill A. Pinkney Pastrana, U of Minnesota, Duluth
Brad J. Porfilio, California State University, East Bay
Kenneth J. Saltman, UMass, Dartmouth
Doug Selwyn, SUNY at Plattsburgh
Özlem Sensoy, Simon Fraser University
Patrick Shannon, Penn State University
John Smyth, University of Huddersfield
Mark Stern, Colgate University
Beth Sondel, North Carolina State University
Hannah Spector, Penn State University, Harrisburg

Linda Ware, SUNY at Geneseo